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We investigate the nonclassicality of a photon-subtracted Gaussian field, which was produced in a recent
experiment, using negativity of the Wigner function and the nonexistence of well-behaved positiveP function.
We obtain the condition to see negativity of the Wigner function for the case including the mixed Gaussian
incoming field, the threshold photodetection and the inefficient homodyne measurement. We show how similar
the photon-subtracted state is to a superposition of coherent states.
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I. INTRODUCTION

The recent development of quantum optics has opened the
possibility of generating and manipulating various nonclas-
sical light fields, which cannot be described by classical
theory, in a real laboratory. It is generally accepted that the
presence of a positive well-definedP function sa quasiprob-
ability function in phase spacef3gd signals the field classical
f4g; otherwise the field is categorized as nonclassical. A
stronger constraint on nonclassicality is the presence of nega-
tivity in the Wigner functionsanother quasiprobability func-
tiond of the fieldf5g. While a Gaussian field may not have its
P function, its Wigner function never becomes negative. For
example, the squeezed vacuum state is represented by its
Gaussian Wigner function while itsP function does not exist
f6g. It is also known that a Gaussian field remains Gaussian
by linear transformations which correspond to basic tools in
a quantum optics laboratory such as a phase shifter, a beam
splitter, and a squeezerf1,2g.

Two better-known nonclassical fields are a squeezed state
and a superposition of two separate coherent states
scoherent-state superpositiond. The two kinds of states are
closely related to probably the most fundamental and intrigu-
ing paradoxes in quantum theory, i.e., the Einstein-Podolsky-
Rosen paradoxf7g for a two-mode squeezed state and the
Schrödinger’s cat paradoxf8g for a coherent-state superposi-
tion. They are also known as useful resources for various
schemes in quantum-information processing. A squeezed
state and a coherent-state superposition manifest different
types of nonclassicality. Whereas a squeezed state is a
Gaussian field, a coherent-state superposition is non-
Gaussian and shows a large amount of negativity in its
Wigner function. There was an early attempt to relate the two
states through quantum noise of arbitrary strengthf9g. Dakna
et al. f10g considered a connection between the two states by
subtracting a precise number of photons from a squeezed
field. They also showed that any quantum state can be gen-
erated from the vacuum by application of the coherent dis-
placement operator and adding photonsf11g. On the other
hand, it has been reported that by squeezing a single-photon
state one can generate a state which has almost unit fidelity
to a coherent-state superposition of small amplitudef12g.

It is only very recently that a traveling non-Gaussian field
was experimentally generated by subtracting a photon from a

squeezed vacuum by Wengeret al. f13g. They used a beam
splitter and a threshold detector to subtract a photon from the
squeezed field, but the reconstructed Wigner function failed
to show a negative valuef13g. It is thus timely to analyze the
generation of a non-Gaussian state in relation to the status of
experiments. In particular, as such the state forms a starting
point for distillation of a continuous-variable field for
quantum-information processingf14g and may improve the
efficiency of quantum teleportationf15g, the study will be of
use. In this paper, we assess the nonclassicality of a photon-
subtracted Gaussian field and study how similar this state is
to a coherent-state superposition. We assess negativity of the
Wigner function in conjunction with the nonexistence of the
positiveP function.

II. FIELD GENERATED BY SUBTRACTING A PHOTON

We would like to consider what kind of state one pro-
duces by eliminating one photon from a simple Gaussian
function. A single-mode Gaussian field of its density operator
r̂ may be represented by the Weyl characteristic function

f16–19g defined asCsjd=TrfD̂sjdr̂g:

Csjd = expS−
A

2
jr

2 −
B

2
ji

2D , s1d

whereA andB are determined by the quadrature variances of
the field. The displacement operator has been defined as

D̂sjd=expsjâ†−j* âd, where â and â† are bosonic annihila-
tion and creation operators, respectively. Note also that the
density operator can be obtained from the characteristic func-
tion as

r̂ =
1

p
E d2j CsjdD̂s− jd, s2d

which can be straightforwardly obtained using the identities
s1/pded2aualkau=1 and f20g

ualkbu =
1

p
E d2j D̂s− jdkbuD̂sjdual

where ual is a coherent state of amplitudea. Even though
Eq. s1d does not represent a very general Gaussian field,

PHYSICAL REVIEW A 71, 043805s2005d

1050-2947/2005/71s4d/043805s6d/$23.00 ©2005 The American Physical Society043805-1



rotation and/or displacement operation brings any Gaussian
field to this form. It is useful to start with Eq.s1d because it
is extremely challenging to produce a pure squeezed state
with AB=1 and the characteristic functions1d allows us to
treat a single-mode Gaussian state of a mixed state. The un-
certainty relation is given byABù1 and the Gaussian state is
called squeezed when eitherA,1 or B,1.

Let us consider the experiment by Wengeret al. f13g. First
of all, they produce a squeezed Gaussian state; then this
passes through a beam splitter with transmittivityT= t2,
where the other input port is assumed to be served by a
vacuum. At the one output of mode 2, we conditionally mea-
sure a one-photon stateu1l2. The state obtained at the other
output port of mode 1 was what Wengeret al. produced as a
non-Gaussian field in their experiment. We will evaluate the
Wigner function for this field of mode 1.

By beam splitting the squeezed Gaussian field whose
characteristic function is written ass1d and the vacuum of its
characteristic functionCvsjd=exps−1

2uju2d, the characteristic
function for the output field of modes 1 and 2 isf21g

Coutsh,jd = expS−
1

2
xVxTD s3d

wherex=shr ,hi ,jr ,jid and the correlation matrix

V =1
n1 0 c1 0

0 n2 0 c2

c1 0 m1 0

0 c2 0 m2

2 s4d

with

n1 = TA+ R, n2 = TB+ R, c1 = trsA − 1d,

c2 = trsB − 1d, m1 = RA+ T, m2 = RB+ T, s5d

andT= t2 andR=r2.
We then use the two-mode version of Eq.s2d for the den-

sity operator of the output field:

r̂out =
1

p2 E Coutsh,jdD̂1s− hdD̂2s− jdd2h d2j. s6d

The density operator for the field of mode 1 conditioned on
one-photon measurement for mode 2 is

r̂1 = N 2k1ur̂outu1l2. s7d

Throughout the paper,N denotes the appropriate normaliza-
tion factor. For the case of Eq.s7d,

N =
1

2k1uTr1fr̂outgu1l2

=
fsm1 + 1dsm2 + 1dg3/2

2sm1m2 − 1d
. s8d

With the knowledge of the one-photon Fock-state expecta-
tion value of the displacement operatorf20,22g

k1uD̂s− jdu1l = e−uju2/2s1 − uju2d,

the density operator is found to be

r̂1 =
N
p2 E Csh,jdD̂1s− hde−uju2/2s1 − uju2dd2h d2j.

The characteristic function is then easily obtained using the

identity TrfD̂szdD̂s−hdg=pds2dsz−hd:

C1szd = F1 −
c1

2sm2 + 1dzr
2

sm1 + 1dsm1m2 − 1d

−
c2

2sm1 + 1dzi
2

sm2 + 1dsm1m2 − 1dGexpF−
1

2
Sn1 −

c1
2

m1 + 1
Dzr

2

−
1

2
Sn2 −

c2
2

m2 + 1
Dzi

2G . s9d

By Fourier transformation of the Weyl characteristic function
f23g, we obtain the Wigner function. Now, the first point we
are interested in is the negativity of the Wigner function. It is
clear that the Fourier transform of Eq.s9d has the largest
negativitysif any existsd at the origin of phase space and the
value of the Wigner function at the point is

W1s0d ~
B − 1

sT + 1dB + R
+

A − 1

sT + 1dA + R
, s10d

which has been obtained by substituting the parameterss5d.
It is obvious that ifA.1 or B.1, i.e., the incoming Gauss-
ian field is not squeezed,W1s0d is positive everywhere. In
order to find the exact condition for negativity in the Wigner
function, we assume thatA,1, B.1, and introduce positive
parametersx=sA+1d / s1−Ad andy=sB+1d / sB−1d. Then the
right-hand sidesRHSd of Eq. s10d becomes

2T − x + y

sT − xdsT + yd

whose denominator is always negative. The numerator be-
comes positive when the transmittivity satisfies

T .
AB− 1

s1 − AdsB − 1d
, s11d

which always holds when the incoming Gaussian field is
pureAB=1 sin other words, if the incoming Gaussian field is
a pure squeezed state, the Wigner function always shows
negativity by subtracting a photon from itd.

The P function of the field may be obtained using the
relation between its characteristic functionC1

spd and the Weyl
characteristic functionf23g:

Cspdszd = Cszdeuzu2/2. s12d

With use of the characteristic functions9d and general Gauss-
ian integration, we find that theP characteristic function is
integrable whensni −1dsmi +1d−ci

2.0 for i =1,2. Bysubsti-
tuting the parameterss5d, we find the condition equivalent to
2TsA−1d.0 and 2TsB−1d.0. So if the incoming field is
squeezed, it is not possible to integrateCspd and noP func-
tion exists. Considering the positivity of theP function, after
a little algebra with Fourier transformation of theP charac-
teristic function, we find that theP function is positive as
long as it exists in this case. We conclude that the single-

KIM et al. PHYSICAL REVIEW A 71, 043805s2005d

043805-2



photon subtracted field is nonclassicalsin the sense of a lack
of an acceptableP functiond provided the original incoming
field is squeezed.sHowever, the Wigner function does not
necessarily show negativity for all those nonclassical states
unless the incoming Gaussian field was pure.d Unless the
incoming Gaussian field is nonclassical we cannot generate a
nonclassical state by subtracting a photon from it.

This seemingly trivial result is not obvious at all as con-
trasted by the nonclassicality of a field by adding a photon
into a Gaussian fieldf25,26g. In distinction to the case of
subtracting a photon, the photon-added Gaussian state al-
ways shows negativity at the origin of the phase space
f26–28g. By adding a photon, a highly classical state such as
a high-temperature thermal state becomes nonclassical,
showing negativity in its Wigner function. The realization of
such a photon-added state is beyond the scope of the current
work but we may think of a possibility within cavity quan-
tum electrodynamics or the phonon state of a driven ion in a
cavity f28g.

We now introduce the coherent-superposition statef24g

ucl = Nsual − u− ald, s13d

where N=1/Î1−expf−2a2g, to assess its fidelity to the
photon-subtracted Gaussian state. It is straightforward to cal-
culate the characteristic function of the coherent-state super-
position from Eq.s13d f6g. The closeness of two states, one
of which is a pure stateufl and the otherspure or mixedd is
represented by its density operatorr̂1 is measured by the
fidelity F:

F = kfur̂ufl =
1

p
E d2z CfszdCrszd s14d

where the subscripts refer to the respective states.
The fidelity betweenr̂1 and the coherent-state superposi-

tion s13d has been calculated from Eqs.s1d, s13d, and s14d
and plotted in Fig. 1. The incoming Gaussian field has been
assumed a pure squeezed field. In Fig. 1, the solid line is the
optimized fidelity between the photon-subtracted state and
the ideal coherent-state superposition by an ideal single-
photon detector. The fidelity is very high asF.0.99 regard-
less of the transmittivity of the beam splitter when an ideal
single-photon detector is used. The optimized amplitude of
the ideal coherent-state superposition isa=1.16 for the
transmittivity close to unity. If the transmittivityT gets
smaller, the amplitude of the ideal coherent-state superposi-
tion, which maximizes the fidelity, also becomes smaller. For
example, the amplitude will bea=1.02 s1.09d for T=0.8
s0.9d. However, the fidelity is not sensitive to the transmit-
tivity of the beam splitter as shown in Fig. 1 because the
single-photon detector successfully subtracts only one pho-
ton from the Gaussian state regardless of the transmittivity of
the beam splitter. In fact, the fidelity gets slightly better as
the transmittivity becomes smaller, due to the fact that both
of the states are reduced to the exact single-photon state as
T→0.

It is interesting that the fidelity between the photon-
subtracted fieldr̂1 and the coherent-state superposition is
very high. This could have been guessed from their photon-

number distributions. The squeezed vacuum is a state with
only an even number of photonsf6g while the coherent-state
superpositions13d is a state with only an odd number of
photonsf12g. By subtracting one photon from the squeezed
state, the two states may become closer to each other. We see
that the photon-subtracted squeezed field is close to the
coherent-state superposition of small amplitudes. One reason
can be found again in their photon-number distributions. The
photon-number distribution ofucl peaks arounduau2 while
that of r̂1 is a monotonically decreasing function with regard
to the photon number. Thus, whena is small, the distribu-
tions become similar to each other. Of course, this check of
the photon-number distributions gives only a hint as the
photon-number distribution does not necessarily convey all
the coherence properties of a quantum field.

III. EXPERIMENTAL REALITY

As can be seen in Fig. 1, the fidelity between the ideal
coherent-state superposition and the photon-subtracted state
is not so sensitive to reflectivity of the beam splitter. This
seemingly good result is due to an ideal single-photon detec-
tor assumed for the photon-subtracted stater̂1. As men-
tioned, the states7d is what is wanted to achieve but the
available high-efficiency photodetector is not able to discern
one and any number of photons. Thus the state experimen-
tally generated using such a threshold photodetector is

r̂a = No
n=1

`

2knur̂outunl2. s15d

Consider the density operator for mode 1 of the output field,

r̂t = Tr2fr̂outg = o
n=0

`

2knur̂outunl2. s16d

It is then clear from Eqs.s15d and s16d that

FIG. 1. The fidelity between the photon-subtracted state and the
ideal coherent-state superposition with an ideal single-photon detec-
tor ssolid lined and a threshold detectorsdotted lined. The initial
squeezing parameter is exps2sd=2.36 and thex axis is the transmit-
tivity of the beam splitterT= t2. The amplitudea of the ideal
coherent-state superposition is optimized for the maximum fidelity.
The optimized amplitudea ranges between 1.02swhenT=0.8d and
1.16 swhenT→1d.
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r̂a = Nsr̂t − 2k0ur̂outu0l2d s17d

where

r̂t =
1

p
E Coutsh,0dD̂1s− hdd2h s18d

and

2k0ur̂outu0l2 =
1

p2 E Coutsh,jde−uju2/2D̂1s− hdd2h d2j.

s19d

Using Coutsh ,jd as we have already discussed, we find the
characteristic functionCaszd for r̂a:

Caszd = Ne−sn1zr
2+n2zi

2d/2F1 −
2

Îsm1 + 1dsm2 + 1d

3 expS c1
2

2sm1 + 1d
zr

2 +
c2

2

2sm2 + 1d
zi

2DG . s20d

The normalization factor is calculated as

N =
Îsm1 + 1dsm2 + 1d

Îsm1 + 1dsm2 + 1d − 2
.

The Wigner function obtained by Fourier transformation of
the characteristic functions20d is what Wengeret al. would
have reconstructedf13g if the detection efficiency of their
experiment had been perfect and the modal purity unity.

Let us next consider the negativity of the Wigner function.
By inspection of the characteristic function, we realize that
the Wigner function has the largest negativitysif anyd at the
origin of the phase space and the value of the Wigner func-
tion at this point is

Was0d =
2N
p H 1

În1n2

−
2

Îfn1sm1 + 1d − c1
2gfn2sm2 + 1d − c2

2gJ .

s21d

By partly substituting the parameterss5d, we find that the
Wigner function becomes negative when

2
Îsn1 + Adsn2 + Bd

.
1

În1n2

s22d

which becomes a criterion for the transmittivity

T .
4 − sA + 1dsB + 1d
3sA − 1dsB − 1d

. s23d

For a pure squeezed Gaussian incoming field, the condition
becomesT.1/3. It is interesting to note that regardless of
the degree of squeezingsprovided it is not zerod, we can see
the negativity in the Wigner function provided the transmit-
tivity is larger than 1/3.

Let us assess the degree of nonclassicality by theP func-
tion criterion. With use of the relations12d between the char-
acteristic functions, we note that theP characteristic function
for r̂a is integrable whenTsA−1d.0 andTsB−1d.0. We
have checked that theP function is semipositive when it

exists and conclude that, for nonzero transmittivity of the
beam splitter, if and only if the incoming Gaussian field is
squeezed, the any-number photon-subtracted stater̂a is non-
classical. Again, theP function criterion is weaker than the
negativity criterion for the Wigner function.

We now consider how close the field obtained using the
threshold detector is to the coherent-state superpositions13d.
The optimized fidelity has been calculated using Eqs.s13d,
s14d, ands20d, and plotted in Fig. 1. It tells us that the state
which is obtained by subtracting any number of photons is
similar to the coherent-state superposition only when the
transmittivity of the beam splitter is very high. For example,
the fidelity is higher than 90% whenT.0.87. In this case,
the chance of one-photon subtraction is more likely. Note
that the optimized amplitudea ranges between 1.02swhen
T=0.8d and 1.16swhenT→1d in Fig. 1.

A. Inefficient detection and modal purity

Homodyne detection may be used to reconstruct the
Wigner function for the fieldr̂a. Even though homodyne
detectors are known for their high efficiency, the overall de-
tection efficiency was about 75% in Wengeret al.’s experi-
ment f13g. An imperfect detector is equivalent to a perfect
detector with a beam splitter in frontf29g, where the trans-
mittivity of the beam splitter is determined by the detection
efficiencyh. From Ref.f30g, we note that the characteristic
function for the signal field passing through a beam splitter
where the other input port is served by the vacuum is

Cimszd = CasÎhzdCvsÎ1 − hzd. s24d

Substituting Eq.s20d into Eq.s24d, we find the characteristic
function for the detected field. The Fourier transform of the
characteristic function shows its largest negativity at the ori-
gin of the phase space and the value there is

Wims0d ~
1

Îvw
−

1
Îsv − RsA − 1d/2dsw − RsB − 1d/2d

s25d

where v=TsA−1dh+1 andw=TsB−1dh+1. Under the as-
sumptionsA−1dsB−1d,0, this becomes negative when the
detection efficiency satisfies

h . −
1

2TsA − 1d
−

1

2TsB − 1d
−

R

4T
.

In particular, for a pure Gaussian incoming field, the condi-
tion becomes

h .
1 + T

4T
. s26d

The RHS is smaller than unitysthe detection efficiencyh
ø1d only whenTù1/3. This is in good agreement with the
perfect detection case. So, in order to see negativity in the
Wigner function, the beam splitter has to have a transmittiv-
ity larger than 1/3 first and then the detection efficiency has
to satisfy the conditions26d. Wengeret al. employed a beam
splitter with T<0.88 in which case the detection has to be

KIM et al. PHYSICAL REVIEW A 71, 043805s2005d

043805-4



larger than a mere 53.4% to see negativity in the Wigner
function.

Another important factor which degrades the quantum ef-
fect of the photon-subtracted Gaussian state in a real experi-
ment is the modal purity factorf13g. If the dark count rate of
the photodetector employed to subtract a photon is non-
negligible, the resulting state can be estimated in a mixture
of photon-subtracted squeezed state and squeezed state as

jWsad + s1 − jdWsqsad s27d

whereWsad is the Wigner function of the photon-subtracted
squeezed state,Wsqsad is the Wigner function of the
squeezed state, andj corresponds to the modal purity factor,
which was 0.7, in Wengeret al.’s experimentf13g. The
Wigner functions of the photon-subtracted Gaussian state
have been plotted for a number of different cases in Fig. 2. It
shows that the negativity of the Wigner function disappears
when both of the homodyne efficiencyh and the modal pu-
rity j are considered taking relevant experimental values. We
suggest that either the homodyne efficiency should be im-
proved from 0.75 to 0.9 or the modal purity factor should be
improved from 0.7 to 0.9 to clearly observe the negativity of
the Wigner function. In these cases, the minimum negativity
will be −0.044 and −0.073, respectively.

IV. REMARKS

In this paper, we are interested in the nonclassicality of a
state produced by subtracting photons from a Gaussian field.
Subtracting a photon does not transform a classical state into
a nonclassical state whereas a nonclassical input remains
nonclassical. This is in contrast to the case of adding a pho-
ton to a Gaussian field, in which case even a very chaotic
field transforms into a nonclassical statef26–28g. The non-
Gaussian state obtained by subtracting a photon from a
Gaussian field may show large negativity in its Wigner func-
tion. The condition to obtain the negativity is analyzed for a
realistic case including the mixed-state input, threshold de-
tection, inefficient homodyne detection, and modal purity.
The non-Gaussian state analyzed in this paper is compared
with a coherent-state superposition which may be extremely
useful for fundamental and application reasons. The com-
parison shows fidelity higher than 90% for the experimen-
tally relevant situation. We compare our analysis with a re-
cent experimental demonstrationf13g of the photon-
subtracted Gaussian field and suggest that either the
homodyne efficiency or the modal purity factor should be
improved to around,0.9 to clearly observe the negativity of
the Wigner function.

Note added. Recently, we were made aware of Ref.f31g

which considers nonlocality of a photon-subtracted squeezed
state.
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FIG. 2. sColor onlined sad The Wigner functionWszd of a
photon-subtracted Gaussian state with a threshold detector for pho-
ton subtraction and ideal homodyne detectors for reconstruction of
the Wigner function whenT=0.88 and exps2sd=2.36. The mini-
mum negativity is found asWs0,0d=−0.52. sbd The Wigner func-
tion of a photon-subtracted Gaussian state under the same condition
as sad but with homodyne efficiencyh=0.75. The minimum nega-
tivity has been reduced to −0.15.scd The Wigner function of a
photon-subtracted Gaussian state under the same condition assad
but with homodyne efficiencyh=0.75 and with the modal purity
factor 0.7. The negativity of the Wigner function has disappeared as
Ws0d=0.075.
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